If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3b^2=60
We move all terms to the left:
3b^2-(60)=0
a = 3; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·3·(-60)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*3}=\frac{0-12\sqrt{5}}{6} =-\frac{12\sqrt{5}}{6} =-2\sqrt{5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*3}=\frac{0+12\sqrt{5}}{6} =\frac{12\sqrt{5}}{6} =2\sqrt{5} $
| 5(0)-2y=-30 | | 2/x+5=5 | | 2u^2+5-3=0 | | 3x-1/6=12 | | 21x-84=1029 | | (3x+14)+(5x-2)=10x-18 | | 9x-18=297 | | 3/2*x=5 | | .25x+.10(3)=15(x+3) | | 15^-5y=12 | | x-6x=-30 | | 6t-12=30 | | (4a-12)/2=4 | | (8/(4x-24))-1=2/(x-6) | | f-6/2=2 | | 2y^2-8y-120=0 | | -4(-4x-8)=128 | | u/5+2=0 | | 3=z-4/4 | | t-3/3=4 | | m-5/3=3 | | 7b-1=3b+19 | | 5(7-n)=5 | | -4.9x^2+850=0 | | 3a-(2a-5)=4 | | 2s=2.6 | | (2+z)(3z+5)=0 | | 24=1/2(x)(3x) | | 2(y+5)=3(y-8 | | 8(x-6)=-(x-3) | | -20-5x=-60 | | 5(7+8v)=-33+6v |